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Summary

Elucidating the mechanisms of metastasis in prostate cancer, particularly to the bone, is a major
issue for treatment of this malignancy. We previously reported that an androgen-independent vari-
ant had higher expression of glutathione S-transferase pi (Gst-pi) compared with a parent
androgen-dependent transplantable rat prostate carcinoma which was established from the trans-
genic rat for adenocarcinoma of the prostate (TRAP). A new cell line, PCail, was established from
the androgen-independent prostate tumor and used to investigate its metastatic potential in nude
mice. PCail had strong expression of Gst-pi as well as androgen-independent prostate tumor, there-
fore we knocked-down Gst-pz in PCail by iRNA strategy to examine the roles of Gst-pi on androgen-
independency, cell proliferation, and oxidative stress. It was clearly demonstrated that PCail fre-
quently formed metastatic lesions in the lung and lymph nodes after orthotopic implantation in the
prostate, and in the lung and bone after intravenous injections. Immunohistochemically, Gst-pi ex-
pressions were demonstrated in prostate tumors derived from orthotopically implanted PCail cells,
and metastasis to bone resulting from tail vein injections, but not in lung and lymph nodes. Attenu-
ation of Gst-pi expression by Gsit-pi-siRNA in vitro significantly suppressed cell proliferation rate
and increased levels of intracellular reactive oxygen species (ROS) in androgen depleted condition.
These results suggest that Gst-pi has an important role in adapting prostate cancer for growth and
metastasis involving an alteration of ROS signaling, and that Gst-pi expressions of the prostate can-
cers are dependent on metastatic sites.
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Table 1. frequency of metastasis by PCail cell line
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Figure 1. Androgen receptor expression and func-
tion in PCail cell line.

The established cell line, PCail, grew with spheroid
formation, and immunohistochemical analysis re-
vealed intense nuclear staining for AR in androgen
containing medium (a). Western blot analysis
showed that PCail cells had AR expression similar
to the human prostate cancer cell line LNCaP (b).
WST-1 assay revealed that growth of PCail cells in
CS-FBS medium was enhanced by 1-10 nM Dihy-
drotestosterone (DHT) (c).
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Figure 2. Gst-pi expressions in PCail.
PCail in the CS-FBS medium (PCail CS) had
higher expression levels of Gst-pi in RT-PCR (a)

and Western blot (b) compared to cells in normal
medium. Expressions of GST-pi in PC3 and DU145
were confirmed.
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Figure 3. Gst-pi siRNA treatment in PCail cells in
CS-FBS medium.

PCail cells in CS-FBS medium were treated with
Gst-pi-siRNA. Significant growth inhibition (**, P<
0.001) was observed in the Gst-pi-siRNA treated
PCail cells in CS-FBS medium (Figure 3a). Gst-pi
expression was markedly decreased in Gst-pi-
siRNA group, while negative control (NC) group
and reagent group had clearly detectable Gst-pi sig-
nals (Figure 3b). DCFH assay revealed that ROS
was significantly higher in Gst-pi-siRNA treatment
group at day 3 after transfection (**, P<<0.001, Fig-
ure 3c). At days 3 and 5, the numbers of PCail
cells were counted after treatment with control,
and 1 uM, 10 uM ethacrynic acid (EA). The sup-
pression of proliferation was statistically significant
by treatment of 1 uM or 10 uM (**, P<<0.001, Figure
3d). DCFH assay revealed that the concentration
dependence of ROS was higher in the EA treat-
ment groups (*, P<0.05, **, P<0.001, Figure 3e).
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Figure 4. Representative histopathological appear-
ance of subcutaneous PCail tumor in nude mice.
Figures 4a-d show the tumors in the castrated mice
and the 4e-h show the tumors in the non-castrated
mice. SV40 Tag was stained to confirm origin from
the TRAP prostate tumor (b, f). Non castrated
mice showed nuclear staining of AR (g), whereas
castrated mice showed cytoplasmic staining (c), in-
dicating non—active receptor function. The staining
of Gst-pi was higher in castrated group (d) than in
non-castrated group (h). The sequential changes
are shown of subcutaneous PCail tumor volumes
(i) (1 x 10° cells, n=4 each, *, P<0.05). Representa-
tive subcutaneous tumors at 2 weeks after injection
in castrated or non-castrated groups (Figure 4k,
left: Gst-pi siRNA group with castration, second
from the left: negative control siRNA group with
castration, third from the left: Gst-pr sSiRNA group
with non-castation, right: negative control siRNA
group with non-castration, white arrow: tumor) .
Figure 4j shows mean tumor volumes after subcu-
taneous injections (1 x 10° cells, n=5 each). Inter-
ference of Gst-pi expression significantly inhibited
tumor cell proliferation in castrated group com-
pared with the corresponding negative control
siRNA group (**, P<0.001).
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Figure 5. Representative histopathological appear-
ance and immunohistochemical analysis in ortho-
topic transplantations and tail vein injections of
PCail cells.

Figures 5a-5f show the prostate tumor and metas-
tatic lesions 6 weeks after orthotopic transplanta-
tion of PCail in castrated nude mice and 5g-5j show
lung and bone metastatic lesions from tail vein in-
jections of PCail cells 9 weeks after injection. HE
staining showed that all of the tumors and metas-
tatic lesions induced by PCail cells are histopa-
thologically similar to human cases, and these le-
sions are compatible with poorly differentiated ade-
nocarcinomas (a, b, ¢, g, h). As for the orthotopic
model, the staining of Gst-pi in the prostate was
higher in castrated mice (d) than in non-castrated
mice (data not shown), and metastatic lesions in
lymph node (e) and in lung (f) were not detected
by Gst-pi staining. In contrast, Gst-pi positive stain-
ing in bone metastatic lesions was apparent (j), but
in lung metastatic lesions Gst-pi positive staining
was not detectable in tail vein injection models (i).
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